

Re2PIM: A Reconfigurable ReRAM-Based PIM Design for Variable-Sized Vector-Matrix Multiplication

Yilong Zhao (Speaker)

Zhezhi He, Naifeng Jing, Xiaoyao Liang, Li Jiang

Shanghai Jiao Tong University

Experiment Setup and Results

Experiment Setup and Results

Background: PIM

- Process in Memory (PIM):
 - Computation happens in memory
 - Reduce data movement
- ReRAM-based Analog Vector-Matrix Multiplier
 - 0(1) time complexity
 - Suitable for DNN acceleration
- Advantages of ReRAM-based DNN accelerator:
 - High computational-density
 - Excellent energy efficiency
 - Superior parallelism

ReRAM-based Analog Matrixvector multiplier Vector: voltages on WLs Matrix: conductance of ReRAM cells Product: currents on BLs

• • • •

Background: ReRAM-Based DNN Accelerator

- Compute Unit (CU)
- Analog Vector-Matrix Multiplication Unit (AVMMU):
 - ReRAM Crossbar (XB)
 - Analog Local buffer (ALB)
 - Analog Adder (A-Adder)
 - Analog Shift & Add (AS+A)
- Peripheral Circuits:
 - Analog-to-Digital Converter (ADC)
 - Digital-to-Analog Converter (ADC)
 - Registers (IR, OR)

Page. 5

上海交通大学 Shanghai Jiao Tong University

Motivation

- Large CU v.s. Small CU
 - Small CU: PRIME[ISCA'16], ISAAC[ISCA'16]; one XB
 - Large CU: TIMELY[ISCA'20]; 16 × 12 XBs

Dilemma of trading off between energy efficiency and throughput !

Less peripheral overhead ↑

Lower Utilization ↓

Energy efficiency-Throughput Trade-off

- Best CU size for ResNet-50 in fixed-size CU design:
 - The best VMM size is 9x16, while the utilization is less than 30%!

Main Idea

- Re2PIM (Proposed):
 - XB can be reconfigured into peripheral circuits or VMM
 - We can reconfigure variable-sized CUs which adapt to different weight matrices

Variable-sized CU

Adapt to different matrices

Experiment Setup and Results

Re2PIM Architecture Overview

- Reconfigurable Unit (RU) , can be reconfigured into:
 - DAC
 - VMM
 - AS+A
- By reconfiguring RUs into different function, the RUs can be grouped into variable-sized CUs

Reconfiguration

- Reconfigure RUs in to variable-sized CU:
 - RUs on the first column DAC \rightarrow AS+A
 - RUs on the last row \rightarrow
 - Other RUs

 \rightarrow

VMM

RU circuit

- ReRAM Crossbar
- A-Adder (mirror current source [ISCA'19])
- MUX & switches

RU Circuit's Reconfigurations

- VMM: Left → Bottom
- DAC: Left \rightarrow Right
- AS+A: Top →
- Bottom

Reconfigure RU into DAC/AS+A

- How to decide the Value of ReRAM cells?
- The output voltage of DAC/AS+A are linear combination of input voltages: $V_{out} = \sum_{i=0}^{K-1} k_i \cdot V_{in}^i$
- Input-Output relation of the circuit: $V_{out} = \sum_{i} \frac{\sum_{j} G_1^{i,j} G_2^j}{\sum_{i,i} G_1^{i,j} G_2^j} \cdot V_{in}^i$
- Define a IP problem with constrains:
 - $0 \le G_1^{i,j}, G_2^j \le l$
 - Coefficients of V_{in}^i equals to k_i
 - A constrain we add for simplification: $\forall j, \sum_i G_1^{i,j} + G_2^j$ are equal
- Solve the IP problem with solvers

Experiment Setup and Results

Experiment Setup

- Baselines:
 - Large CU: PRIME [ISCA'16], ISAAC [ISCA'16]
 - Small CU: TIMELY [ISCA'20]
- Networks:
 - CNNs: AlexNet, VGG, MSRA, ResNet, MobileNet
 - NeuralTalk
 - Bert
- AVMMU circuit: PySpice
- IP Solver: ScipOpt

Design Space Exploration

- Parameter:
 - H, W: RU number on a row/column
 - A: ADC number in a Tile
 - B: IR-RU bus width
- Criteria: Average Computational Efficiency over the benchmarks
- B2-A3-H12-W10 reaches the best

Throughput & Energy Efficiency Improvement

- 27×/34×/1.5× in energy efficiency
- 5.7×/17×/8.2× in throughput
- over PRIME/ISAAC/TIMELY

Accuracy Loss

- Simulate the RU circuit with PySpice
 - ReRAM variation: $\theta = 0.025$ [ICCAD'19], b = 0.0015 [DAC'19]
- Accuracy loss < 0.5% over all the CNN benchmarks

Analysis

- CU size's impact on energy efficiency
 - ISAAC: More AVMMU-Input/Output \rightarrow Low energy efficiency
 - TIMELY & Re2PIM: Fewer AVMMU-Input/Output → High energy efficiency

I:ISAAC T: TIMELY R: Re2PIM N: A naïve design, directly enlarge ISAAC's CU size

Analysis (2)

- CU size's impact on throughput
 - ISAAC: Small CU size \rightarrow Good utilization
 - TIMELY: Large CU size \rightarrow Low utilization
 - Re2PIM: Variable-sized CU \rightarrow Good utilization, best throughput

N: A naïve design, directly enlarge ISAAC's CU size

Conclusion

- A reconfigurable ReRAM-based accelerator named Re2PIM:
 - Mainly composed of arrays of RUs
 - RU can be reconfigured into VMM, AS+A or DAC
 - RUs can be grouped into variable-sized CU
- Achieve high energy efficiency without damaging throughput

Thank You!

Re2PIM: A Reconfigurable ReRAM-Based PIM Design for Variable-Sized Vector-Matrix Multiplication Yilong Zhao (Speaker), Zhezhi He, Naifeng Jing, Xiaoyao Liang, Li Jiang

Shanghai Jiao Tong University

