
STAMP: Accelerating Second-order DNN 

Training Via ReRAM-based Processing-in-

Memory Architecture

Shanghai Jiao Tong University, Shanghai Qi Zhi Institute, Tsinghua University

June 4, 2025

Yilong Zhao (Speaker), Fangxin Liu*, Mingyu Gao, Xiaoyao Liang, Qidong Tang, 

Chengyang Gu, Tao Yang, Naifeng Jing, and Li Jiang*



Background

Training DNN models requires significant computation.

Current approaches to alleviate training burden.

Gholami, et. al. AI and Memory Wall

ForwardBackward

e.g.
Quantization Methods.

(Introduce quantize/dequantize overhead.)



Background – Second-order Training

1st-order training ↖
vs

2nd-order training↖
FEWER STEPS!

𝜃 = 𝜃 − 𝜂 · 𝐴−1∇𝜃𝐽 𝜃 𝐺−1

𝜃 = 𝜃 − 𝜂 · ∇𝜃𝐽 𝜃1st-order training 

2nd-order training 

Utilize the Second-order Information (SOI) Matrix’s 

Inversion for a more accurate step and direction

-> faster convergence



Background – Second-order Training

1st-order training ↖
vs

2nd-order training↖
FEWER STEPS!

𝜃 = 𝜃 − 𝜂 · 𝐴−1∇𝜃𝐽 𝜃 𝐺−1

𝜃 = 𝜃 − 𝜂 · ∇𝜃𝐽 𝜃1st-order training 

2nd-order training 

Why it is not widely used?

SOI matrix brings too much computation/storage 

overhead on GPUs,

𝑂 𝑛2 storage, 𝑂(𝑛3) computing complexity, 

-> longer step time

Loss

Time

1st
2nd

BUT

LONGER STEP 

TIME!

Utilize the Second-order Information (SOI) Matrix’s 

Inversion for a more accurate step and direction

-> faster convergence



Background – ReRAM Accelerator

 

ADC

DAC

DAC

DAC

DAC

Ax

b

𝑏 = 𝑥 ⋅ 𝐴

ReRAM-based

Vector-Matrix Multiplication (VMM)



Background – ReRAM Accelerator

 

ADC

DAC

DAC

DAC

DAC

Ax

b

A
D

C

 

 1

OpAmp

A

b

Feedback

x

𝑏 = 𝑥 ⋅ 𝐴

ReRAM-based

Vector-Matrix Multiplication (VMM)

𝑥 = 𝑏 ⋅ 𝐴−1

ReRAM-based

Matrix Inversion (INV)

Both O(1) Time



Motivation

Use ReRAM+2nd-order training to accelerate DNN training!

𝜃 = 𝜃 − 𝜂 · 𝐴−1∇𝜃𝐽 𝜃 𝐺−1

2nd-order training 

𝑂 𝑛2 storage overhead

𝑂(𝑛3) computing complexity 

ReRAM-based Accelerator

Process in Memory

𝑂 1 Matrix Inversion Time

Loss

Time

1st
2nd Aim:

Fewer Steps without apparently 

enlarging step time

-> Faster training

 

ADC

DAC

DAC

DAC

DAC

Ax

b

A
D

C

 

 1

OpAmp

A

b

Feedback

x

SOI Matrix Overhead ReRAM’s Feature



Problem – Circuit Precision

T
e
s
t 
A

c
c
u
ra

c
y

0.5

0.6

0.7

0.8

5 15 25 35 45 55
#(Epoch)

T
ra

in
in

g
 L

o
s
s

0.5

2.5

4.5

6.5

5 15 25 35 45 55

8-bit 12-bit
16-bit Float-32

Output8-bit 12-bit
16-bit Float-32

SOI 
Matrix

#(Epoch)

(a) (b)

𝑥 = 𝑏 ⋅ 𝐴−1

Matrix 𝐴:

At least 16 bits

Output 𝑥:

At least 12 bits

2nd-order training requires

HIGH-precision Matrix Inversion



Problem – Circuit Precision

T
e
s
t 
A

c
c
u
ra

c
y

0.5

0.6

0.7

0.8

5 15 25 35 45 55
#(Epoch)

T
ra

in
in

g
 L

o
s
s

0.5

2.5

4.5

6.5

5 15 25 35 45 55

8-bit 12-bit
16-bit Float-32

Output8-bit 12-bit
16-bit Float-32

SOI 
Matrix

#(Epoch)

(a) (b)

𝑥 = 𝑏 ⋅ 𝐴−1

Matrix 𝐴:

At least 16 bits

Output 𝑥:

At least 12 bits

2nd-order training requires

HIGH-precision Matrix Inversion

A
D

C

 

 1

OpAmp

A

b

Feedback

x

8-bit A

limited by ReRAM

6-bit b

Limited by DAC
HPCA’21

8-bit x

limited by ADC



Problem – Circuit Precision

T
e
s
t 
A

c
c
u
ra

c
y

0.5

0.6

0.7

0.8

5 15 25 35 45 55
#(Epoch)

T
ra

in
in

g
 L

o
s
s

0.5

2.5

4.5

6.5

5 15 25 35 45 55

8-bit 12-bit
16-bit Float-32

Output8-bit 12-bit
16-bit Float-32

SOI 
Matrix

#(Epoch)

(a) (b)

𝑥 = 𝑏 ⋅ 𝐴−1

Matrix 𝐴:

At least 16 bits

Output 𝑥:

At least 12 bits

2nd-order training requires

HIGH-precision Matrix Inversion

ReRAM-based Matrix Inversion’s

precision is not enough

A
D

C

 

 1

OpAmp

A

b

Feedback

x

8-bit A

limited by ReRAM

6-bit b

Limited by DAC
HPCA’21

8-bit x

limited by ADC



Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

We need 8-bit x, 8-bit A?

HOW?

 

ADC

DAC

DAC

DAC

DAC

Ax

b

4-bit A4-bit x



 

ADC

DAC

DAC

DAC

DAC

Ax

b

 

ADC

DAC

DAC

DAC

DAC

Ax

b

Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

x1 bit 0-3
A1

bit 0-3

A2

bit 4-7

We need 8-bit x, 8-bit A?

HOW?

cycle 0

x2 bit 4-7

cycle 1

𝑏 = 𝑥1 ⋅ 𝐴1 ⋅ 2−8 +
𝑥1 ⋅ 𝐴2 ⋅ 2−4 +
𝑥2 ⋅ 𝐴1 ⋅ 2−4 +
𝑥2 ⋅ 𝐴2

 

ADC

DAC

DAC

DAC

DAC

Ax

b

4-bit A4-bit x



 

ADC

DAC

DAC

DAC

DAC

Ax

b

 

ADC

DAC

DAC

DAC

DAC

Ax

b

Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

x1 bit 0-3

Traditional BIT SLICE SCHEME

A1

bit 0-3

A2

bit 4-7

We need 8-bit x, 8-bit A?

HOW?

cycle 0

x2 bit 4-7

cycle 1

𝑏 = 𝑥1 ⋅ 𝐴1 ⋅ 2−8 +
𝑥1 ⋅ 𝐴2 ⋅ 2−4 +
𝑥2 ⋅ 𝐴1 ⋅ 2−4 +
𝑥2 ⋅ 𝐴2

 

ADC

DAC

DAC

DAC

DAC

Ax

b

4-bit A4-bit x



A
D

C

 

 1

OpAmp

A

b

Feedback

x
A

D
C

 

 1

OpAmp

A

b

Feedback

x

Problem – Circuit Precision

It is more complicated in ReRAM-based Matrix Inversion

A1

bit 0-3

b

A2

bit 4-7

b

𝑏 ⋅ 𝐴−1 ≠ 𝑏 ⋅ 𝐴1 + 𝐴2 −1

xx



A
D

C

 

 1

OpAmp

A

b

Feedback

x
A

D
C

 

 1

OpAmp

A

b

Feedback

x

Problem – Circuit Precision

It is more complicated in ReRAM-based Matrix Inversion

For Matrix Inversion, 

Traditional Bit Slice Scheme Doesn’t Work!

A1

bit 0-3

b

A2

bit 4-7

b

𝑏 ⋅ 𝐴−1 ≠ 𝑏 ⋅ 𝐴1 + 𝐴2 −1

Because Matrix Inversion 

doesn’t have distributive law 

xx



A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

A

b

x



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

b

cycle 0



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

𝑥1 = 𝐴𝐷𝐶8(𝑏 ⋅ 𝐴
−1)

x1 8-bits

cycle 0
ADC quantize 

high 8 bits 

of x

b

cycle 0

cycle 0



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

𝑥1 = 𝐴𝐷𝐶8(𝑏 ⋅ 𝐴
−1)

x1 8-bits

cycle 0
ADC quantize 

high 8 bits 

of x

b

cycle 0

cycle 0

quantized omitted

(lower part)

𝑥1 + 𝑥2 = 𝑏 ⋅ 𝐴−1
In Analog Field:



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

𝑥1 = 𝐴𝐷𝐶8(𝑏 ⋅ 𝐴
−1)

x1 8-bits

cycle 0
ADC quantize 

high 8 bits 

of x

b

cycle 0

cycle 0

Remove x1 part from b,

x2 becomes high bits
quantized omitted

𝑥1 + 𝑥2 = 𝑏 ⋅ 𝐴−1 𝑥2 = 𝑏 ⋅ 𝐴−1 − 𝑥1
In Analog Field:



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

𝑥1 = 𝐴𝐷𝐶8(𝑏 ⋅ 𝐴
−1)

x1 8-bits

cycle 0
ADC quantize 

high 8 bits 

of x

𝑏′ = 𝑏 − 𝐴 ⋅ 𝑥1

b

cycle 0

b’

cycle 1

cycle 0

cycle 1

Remove x1 part from b,

x2 becomes high bits
quantized omitted

𝑥1 + 𝑥2 = 𝑏 ⋅ 𝐴−1 𝑥2 = 𝑏 ⋅ 𝐴−1 − 𝑥1
In Analog Field:



2 Levels: 𝑥, 𝐴

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

Level 𝑥
16-bit

->2*8 bits

𝑥1 = 𝐴𝐷𝐶8(𝑏 ⋅ 𝐴
−1)

x1 8-bits

cycle 0
ADC quantize 

high 8 bits 

of x

𝑏′ = 𝑏 − 𝐴 ⋅ 𝑥1

b

cycle 0

b’

cycle 1

x2 8-bits

cycle 1

cycle 0

cycle 1

𝑥2 = 𝐴𝐷𝐶8(𝑏′ ⋅ 𝐴
−1)

Get lower 8 bits

Remove x1 part from b,

x2 becomes high bits
quantized omitted

𝑥1 + 𝑥2 = 𝑏 ⋅ 𝐴−1 𝑥2 = 𝑏 ⋅ 𝐴−1 − 𝑥1
In Analog Field:



High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:



High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
−1 ⋅ 𝑏

= 𝐴𝐻
−1 ⋅ 𝐼 − 𝑃 + 𝑃2 − 𝑃3 +⋯ ⋅ 𝑏

(𝑃 = 𝐴𝐻
−1 ⋅ 𝐴𝐿)



 

ADC

DAC

DAC

DAC

DAC

Ax

b

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
−1 ⋅ 𝑏

= 𝐴𝐻
−1 ⋅ 𝐼 − 𝑃 + 𝑃2 − 𝑃3 +⋯ ⋅ 𝑏

(𝑃 = 𝐴𝐻
−1 ⋅ 𝐴𝐿)

AL

8-bits

AH

8-bits

init: 𝑟 = 𝐴𝐻
−1 ⋅ 𝑏, 𝑥 = 𝑟



 

ADC

DAC

DAC

DAC

DAC

Ax

b

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
−1 ⋅ 𝑏

= 𝐴𝐻
−1 ⋅ 𝐼 − 𝑃 + 𝑃2 − 𝑃3 +⋯ ⋅ 𝑏

(𝑃 = 𝐴𝐻
−1 ⋅ 𝐴𝐿)

AH

8-bits

AL

8-bits

init: 𝑟 = 𝐴𝐻
−1 ⋅ 𝑏, 𝑥 = 𝑟

Iteration 0:

𝑟 = 𝐴𝐻
−1𝐴𝐿𝑟

𝑥 −= 𝑟

r each 

iteration

calculate one term 

in each iteration

𝑷



 

ADC

DAC

DAC

DAC

DAC

Ax

b

A
D

C

 

 1

OpAmp

A

b

Feedback

x

High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
−1 ⋅ 𝑏

= 𝐴𝐻
−1 ⋅ 𝐼 − 𝑃 + 𝑃2 − 𝑃3 +⋯ ⋅ 𝑏

(𝑃 = 𝐴𝐻
−1 ⋅ 𝐴𝐿)

AH

8-bits

AL

8-bits

init: 𝑟 = 𝐴𝐻
−1 ⋅ 𝑏, 𝑥 = 𝑟

Iteration 0:

𝑟 = 𝐴𝐻
−1𝐴𝐿𝑟

𝑥 −= 𝑟
Iteration 1:

𝑟 = 𝐴𝐻
−1𝐴𝐿𝑟

𝑥 += 𝑟
Iteration 2:

…

r each 

iteration

calculate one term 

in each iteration

𝑷

𝑷𝟐

𝑷𝟑

x becomes more and more accurate



STAMP Architecture

Tile
Sub-Tile

VMM 

XB

B
u
s

Mul

S+A

W
ir
e
s
 &

 S
w

it
c
h
e

s

B
u
s

IR/OR

eDRAM Buffer

VMM 

XB W
ir
e
s
 &

 S
w

it
c
h

e
s

Sub-Tile

Sub-Tile

Sub-Tile

Sub-Tile

INV 

XB

V
F

s

OpAmps

SWs

INV XB

Act: 

IR: 

OR:

XB:

Mul:

S+A:

Act

Activation

Input Register

Output Register

Crossbar

Element-wise 

Multiplier

Element-wise 

Shift-and-Add

DAC

A
D

C

For Vector-matrix 

multiplication

For Matrix 

Inversion
Connect INV 

crossbars for scaling



Evaluation

Baselines Tesla V100 GPU, ReRAM-based 1st-order training

Benchmark VGG-13/16/19, MSRA, ResNet, Bert, autoencoder

Simulation

Model

DAC ADC Hyper ISCA’16

OpAMP HPCA’21

DRAM buffer CACTI 7

Architecture

Setup

VMM:INV 16:1

Cycle 100ns

Crossbar size 256



Performance
S

p
e

e
d
u
p
 o

f 
O

n
e
 

E
p
o

c
h

GPU-1
st

GPU-2
nd

ReRAM-1st STAMP(ReRAM-2
nd

 )

S
p
e

e
d
u
p
 o

f 
th

e
 

W
h
o
le

 T
ra

in
in

g
 

P
h
a

s
e

(a) (b)

0

20

30

40

50

60

1
10

0

20

40

60

80

100

120

1
0

50

100

150

200

250

300

1
10

0

10
1

10
2

10
3

10
4

10
5

Speedup of One Epoch Speedup of The Whole Training Phase

STAMP is 68x better than GPU-1st

Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster



Performance
S

p
e

e
d
u
p
 o

f 
O

n
e
 

E
p
o

c
h

GPU-1
st

GPU-2
nd

ReRAM-1st STAMP(ReRAM-2
nd

 )

S
p
e

e
d
u
p
 o

f 
th

e
 

W
h
o
le

 T
ra

in
in

g
 

P
h
a

s
e

(a) (b)

0

20

30

40

50

60

1
10

0

20

40

60

80

100

120

1
0

50

100

150

200

250

300

1
10

0

10
1

10
2

10
3

10
4

10
5

Speedup of One Epoch Speedup of The Whole Training Phase

- On ReRAM, 2nd–order training always better than 1st-order training

- On GPU, 2nd–order training is worse than 1st-order training due to SOI overhead

STAMP is 68x better than GPU-1st

Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster



Reduced ReRAM writing

STAMP can reduce 55.7% write number compared to first-order training on 

ReRAM-based accelerator, as there are fewer epochs.

Enhance endurance of ReRAM Accelerator



Summary

We use 2nd-order training & ReRAM-based architecture to accelerate DNN 

training.

We propose a high-precision matrix inversion algorithm based on low-

precision ReRAM circuits.



Thank You!


