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Background

Training DNN models requires significant computation.

Current approaches to alleviate training burden.

Gholami, et. al. AI and Memory Wall

ForwardBackward

e.g.
Quantization Methods.

(Introduce quantize/dequantize overhead.)



Background – Second-order Training

1st-order training ↖
vs

2nd-order training↖
FEWER STEPS!

𝜃 = 𝜃 − 𝜂 · 𝐴−1∇𝜃𝐽 𝜃 𝐺−1

𝜃 = 𝜃 − 𝜂 · ∇𝜃𝐽 𝜃1st-order training 

2nd-order training 

Utilize the Second-order Information (SOI) Matrix’s 

Inversion for a more accurate step and direction

-> faster convergence
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Motivation

Use ReRAM+2nd-order training to accelerate DNN training!

𝜃 = 𝜃 − 𝜂 · 𝐴−1∇𝜃𝐽 𝜃 𝐺−1

2nd-order training 

𝑂 𝑛2 storage overhead

𝑂(𝑛3) computing complexity 

ReRAM-based Accelerator

Process in Memory

𝑂 1 Matrix Inversion Time

Loss

Time

1st
2nd Aim:

Fewer Steps without apparently 

enlarging step time

-> Faster training
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Problem – Circuit Precision
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Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

We need 8-bit x, 8-bit A?

HOW?
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Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

x1 bit 0-3
A1

bit 0-3

A2

bit 4-7

We need 8-bit x, 8-bit A?

HOW?

cycle 0

x2 bit 4-7

cycle 1

𝑏 = 𝑥1 ⋅ 𝐴1 ⋅ 2−8 +
𝑥1 ⋅ 𝐴2 ⋅ 2−4 +
𝑥2 ⋅ 𝐴1 ⋅ 2−4 +
𝑥2 ⋅ 𝐴2
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Problem – Circuit Precision

How this problem solved in ReRAM-based Vector-Matrix Multiplication

x1 bit 0-3

Traditional BIT SLICE SCHEME
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We need 8-bit x, 8-bit A?

HOW?
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Problem – Circuit Precision

It is more complicated in ReRAM-based Matrix Inversion

A1
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bit 4-7

b

𝑏 ⋅ 𝐴−1 ≠ 𝑏 ⋅ 𝐴1 + 𝐴2 −1
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Problem – Circuit Precision

It is more complicated in ReRAM-based Matrix Inversion

For Matrix Inversion, 

Traditional Bit Slice Scheme Doesn’t Work!

A1

bit 0-3

b

A2

bit 4-7

b

𝑏 ⋅ 𝐴−1 ≠ 𝑏 ⋅ 𝐴1 + 𝐴2 −1

Because Matrix Inversion 

doesn’t have distributive law 

xx
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quantized omitted

(lower part)

𝑥1 + 𝑥2 = 𝑏 ⋅ 𝐴−1
In Analog Field:
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In Analog Field:



High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:



High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
−1 ⋅ 𝑏

= 𝐴𝐻
−1 ⋅ 𝐼 − 𝑃 + 𝑃2 − 𝑃3 +⋯ ⋅ 𝑏

(𝑃 = 𝐴𝐻
−1 ⋅ 𝐴𝐿)
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2 Levels: 𝑥, 𝐴
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High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
16-bit

->2*8 bits

8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
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iteration
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in each iteration
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High-Precision Matrix Inversion Algorithm

2 Levels: 𝑥, 𝐴

Level 𝐴
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8 bit 𝐴𝐻 & 

8 bit 𝐴𝐿

Taylor Expansion:

𝐴−1 ⋅ 𝑏 = 𝐴𝐻 + 𝐴𝐿
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−1 ⋅ 𝑏, 𝑥 = 𝑟

Iteration 0:
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𝑥 −= 𝑟
Iteration 1:
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𝑥 += 𝑟
Iteration 2:

…

r each 

iteration

calculate one term 

in each iteration

𝑷

𝑷𝟐

𝑷𝟑

x becomes more and more accurate



STAMP Architecture
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Evaluation

Baselines Tesla V100 GPU, ReRAM-based 1st-order training

Benchmark VGG-13/16/19, MSRA, ResNet, Bert, autoencoder

Simulation

Model

DAC ADC Hyper ISCA’16

OpAMP HPCA’21

DRAM buffer CACTI 7

Architecture

Setup

VMM:INV 16:1

Cycle 100ns

Crossbar size 256
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STAMP is 68x better than GPU-1st

Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster
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- On ReRAM, 2nd–order training always better than 1st-order training

- On GPU, 2nd–order training is worse than 1st-order training due to SOI overhead

STAMP is 68x better than GPU-1st

Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster



Reduced ReRAM writing

STAMP can reduce 55.7% write number compared to first-order training on 

ReRAM-based accelerator, as there are fewer epochs.

Enhance endurance of ReRAM Accelerator



Summary

We use 2nd-order training & ReRAM-based architecture to accelerate DNN 

training.

We propose a high-precision matrix inversion algorithm based on low-

precision ReRAM circuits.



Thank You!


