

STAMP: Accelerating Second-order DNN Training Via ReRAM-based Processing-inMemory Architecture

Yilong Zhao (Speaker), Fangxin Liu*, Mingyu Gao, Xiaoyao Liang, Qidong Tang,

Chengyang Gu, Tao Yang, Naifeng Jing, and Li Jiang*

Shanghai Jiao Tong University, Shanghai Qi Zhi Institute, Tsinghua University

June 4, 2025

Background

Training DNN models requires significant computation.

Gholami, et. al. Al and Memory Wall

© Current approaches to alleviate training burden.

e.g.

Quantization Methods. (Introduce quantize/dequantize overhead.)

Background – Second-order Training

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

2nd-order training
$$\theta = \theta - \eta \cdot A^{-1} \nabla_{\theta} J(\theta) G^{-1}$$

Utilize the **Second-order Information (SOI) Matrix's Inversion** for a more accurate step and direction
-> faster convergence

2nd-order training \(^\) **FEWER STEPS!**

Background – Second-order Training

1st-order training

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

2nd-order training $\theta = \theta - \eta \cdot A^{-1} \nabla_{\theta} J(\theta) G^{-1}$

Utilize the Second-order Information (SOI) Matrix's Inversion for a more accurate step and direction -> faster convergence

Why it is not widely used?

SOI matrix brings too much computation/storage Loss $O(n^2)$ overhead on **GPUs**, $O(n^2)$ storage, $O(n^3)$ computing complexity, -> longer step time

1st-order training \(\scalen\) vs

2nd-order training \(^\) **FEWER STEPS!**

Background – ReRAM Accelerator

$$b = x \cdot A$$

ReRAM-based Vector-Matrix Multiplication (**VMM**)

Background – ReRAM Accelerator

$$b = x \cdot A$$

ReRAM-based Vector-Matrix Multiplication (**VMM**)

$$x = b \cdot A^{-1}$$

ReRAM-based Matrix Inversion (**INV**)

Motivation

Use ReRAM+2nd-order training to accelerate DNN training!

2nd-order training

$$\theta = \theta - \eta \cdot A^{-1} \nabla_{\theta} J(\theta) G^{-1}$$

SOI Matrix Overhead

 $O(n^2)$ storage overhead $O(n^3)$ computing complexity

ReRAM-based Accelerator

ReRAM's Feature

- → Process in Memory
- $\rightarrow O(1)$ Matrix Inversion Time

Aim:

Fewer Steps without apparently enlarging step time

-> Faster training

Matrix *A*: At least **16** bits

Output *x*: At least **12** bits

2nd-order training requires **HIGH**-precision Matrix Inversion

Matrix *A*: At least **16** bits

Output *x*: At least **12** bits

2nd-order training requires **HIGH**-precision Matrix Inversion

Matrix *A*: At least **16** bits

Output *x*: At least **12** bits

2nd-order training requires **HIGH**-precision Matrix Inversion

ReRAM-based Matrix Inversion's precision is **not enough**

• How this problem solved in ReRAM-based Vector-Matrix Multiplication

We need 8-bit x, 8-bit A? HOW?

• How this problem solved in ReRAM-based Vector-Matrix Multiplication

We need 8-bit x, 8-bit A? HOW?

$$b = x1 \cdot A1 \cdot 2^{-8} + x1 \cdot A2 \cdot 2^{-4} + x2 \cdot A1 \cdot 2^{-4} + x2 \cdot A2$$

• How this problem solved in ReRAM-based Vector-Matrix Multiplication

We need 8-bit x, 8-bit A? HOW?

$$b = x1 \cdot A1 \cdot 2^{-8} +$$

$$x1 \cdot A2 \cdot 2^{-4} +$$

$$x2 \cdot A1 \cdot 2^{-4} +$$

$$x2 \cdot A2$$

Traditional **BIT SLICE SCHEME**

It is more complicated in ReRAM-based Matrix Inversion

It is more complicated in ReRAM-based Matrix Inversion

For Matrix Inversion, Traditional Bit Slice Scheme Doesn't Work! Because Matrix Inversion doesn't have distributive law

92 Levels: x, A

2 Levels: x, A

Level *x* 16-bit ->2*8 bits

cycle 0

@2 Levels: x, A

Level *x* 16-bit ->2*8 bits

OpAmp

Feedback

In Analog Field:

$$x1 + x2 = b \cdot A^{-1}$$

Feedback

quantized omitted (lower part)

In Analog Field:

$$x1 + x2 = b \cdot A^{-1} \qquad x2 = b \cdot A^{-1} - x1$$

quantized omitted

Remove x1 part from b, x2 becomes high bits

ADC quantize

quantized omitted

x2 becomes high bits

2 Levels: x, A

Level *A*16-bit
-> 2*8 bits

8 bit A_H & 8 bit A_L

Taylor Expansion:

2 Levels: x, A

Level *A* 16-bit ->2*8 bits

8 bit *A_H* & 8 bit *A_L*

Taylor Expansion:

$$A^{-1} \cdot b = (A_H + A_L)^{-1} \cdot b$$

= $A_H^{-1} \cdot (I - P + P^2 - P^3 + \cdots) \cdot b$
 $(P = A_H^{-1} \cdot A_L)$

2 Levels: x, A

Level *A* 16-bit ->2*8 bits

8 bit *A_H* & 8 bit *A_L*

Taylor Expansion:

$$A^{-1} \cdot b = (A_H + A_L)^{-1} \cdot b$$

$$= A_H^{-1} \cdot (I - P + P^2 - P^3 + \cdots) \cdot b$$

$$(P = A_H^{-1} \cdot A_L)$$

init:
$$r = A_H^{-1} \cdot b$$
, $x = r$

Level *A* 16-bit ->2*8 bits

8 bit *A_H* & 8 bit *A_L*

Taylor Expansion:

$$A^{-1} \cdot b = (A_H + A_L)^{-1} \cdot b$$

$$= A_H^{-1} \cdot (I - P + P^2 - P^3 + \cdots) \cdot b$$

$$(P = A_H^{-1} \cdot A_L)$$

calculate one term in each iteration

init:
$$r = A_H^{-1} \cdot b$$
, $x = r$
Iteration 0:

$$\begin{array}{cc} \boldsymbol{P} & r = A_H^{-1} A_L r \\ x = r \end{array}$$

Level *A* 16-bit ->2*8 bits

8 bit *A_H* & 8 bit *A_L*

Taylor Expansion:

$$A^{-1} \cdot b = (A_H + A_L)^{-1} \cdot b$$

$$= A_H^{-1} \cdot (I - P + P^2 - P^3 + \cdots) \cdot b$$

$$(P = A_H^{-1} \cdot A_L)$$

calculate one term in each iteration

init:
$$r = A_H^{-1} \cdot b$$
, $x = r$
Iteration 0:

$$\begin{array}{ccc}
\mathbf{P} & r = A_H^{-1} A_L r \\
x & -= r
\end{array}$$

Iteration 1:

$$\begin{array}{cc} \boldsymbol{P^2} & r = A_H^{-1} A_L r \\ & x \mathrel{+}= r \end{array}$$

Iteration 2:

 P^3

x becomes more and more accurate

STAMP Architecture

For Vector-matrix multiplication

For Matrix Inversion

Connect INV crossbars for scaling

Evaluation

Baselines	Tesla V100 GPU, ReRAM-based 1st-order training	
Benchmark	VGG-13/16/19, MSRA, ResNet, Bert, autoencoder	
Simulation Model	DAC ADC Hyper	ISCA'16
	ОрАМР	HPCA'21
	DRAM buffer	CACTI 7
Architecture Setup	VMM:INV	16:1
	Cycle	100ns
	Crossbar size	256

Performance

STAMP is 68x better than GPU-1st Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster

Performance

Speedup of **One Epoch**

Speedup of The Whole Training Phase

STAMP is 68x better than GPU-1st Compared to ReRAM-1st, Epoch +21.5%, Overall Training 11.4x Faster

- On ReRAM, 2nd-order training always better than 1st-order training
- On GPU, 2nd—order training is worse than 1st-order training due to SOI overhead

Reduced ReRAM writing

STAMP can **reduce 55.7% write** number compared to first-order training on ReRAM-based accelerator, as there are fewer epochs.

Enhance endurance of ReRAM Accelerator

Summary

We use 2nd-order training & ReRAM-based architecture to accelerate DNN training.

We propose a high-precision matrix inversion algorithm based on low-precision ReRAM circuits.

